ELEMENTS OF UNIVERSAL ALGEBRA

1. VARIETIES

For any class K of (universal) algebras, let $\mathbf{H}(K)$, $\mathbf{S}(K)$, and $\mathbf{P}(K)$, denote the classes of homomorphic images of algebras in K, subalgebras of algebras in K and products of algebras in K, respectively.

Definition 1.1. A class K of algebras is called a variety if $\mathbf{S}(\mathsf{K}) \subseteq \mathsf{K}$, $\mathbf{P}(\mathsf{K}) \subseteq \mathsf{K}$, and $\mathbf{H}(\mathsf{K}) \subseteq \mathsf{K}$.

Theorem 1.2 (Tarski). A class of algebras K is a variety iff HSP(K) = K.

We say that an equation $\varphi(x_1, \ldots, x_n) \approx \psi(y_1, \ldots, y_m)$ holds or is valid on an algebra A and write $A \models \varphi \approx \psi$ if for every $a_1, \ldots, a_n, b_1, \ldots, b_m \in A$ we have $\varphi(a_1, \ldots, a_n) = \psi(b_1, \ldots, b_m)$.

Theorem 1.3 (Birkhoff). A class of algebras V is a variety iff V is equationally definable. That is, there is a set of equations Σ such that for each $\varphi \approx \psi$ in Σ and for each algebra A we have

 $A \in \mathsf{V}$ iff $A \models \varphi \approx \psi$.

Definition 1.4. We say that a variety V is generated by a class K if V = HSP(K).

If for each $A \in \mathsf{K}$ we have $A \models \varphi \approx \psi$, we will write $\mathsf{K} \models \varphi \approx \psi$. It is a corollary of (the proof) of Birkhoff's theorem that a class $\mathsf{K} \subseteq \mathsf{V}$ generates a variety V iff for each equation $\varphi \approx \psi$ we have

 $\mathsf{K} \models \varphi \approx \psi$ implies $\mathsf{V} \models \varphi \approx \psi$

Obviously, K generates V iff $K \subseteq V$ and for any equation $\varphi \approx \psi$, we have that $V \not\models \varphi \approx \psi$ implies $K \not\models \varphi \approx \psi$. If a variety V is generated by a class K, we write Var(K) = V.

Lemma 1.5 (Jónsson's Lemma). Let V be a congruence distributive variety¹ such that V = Var(K). Then $V = PHSP_{U}(K)$, where P_{U} stands for ultraproducts.

1.1. Subdirectly irreducible algebras. In this section we discuss subdirectly irreducible algebras and the second variety theorem of Birkhoff.

Definition 1.6. An algebra A is a subdirect product of an indexed family $\{A_i\}_{i \in I}$ of algebras if

(1) A is a subalgebra of the product $\prod_{i \in I} A_i$

(2) $\pi_i(A) = A_i$, where $\pi_i : \prod_{i \in I} A_i \to A_i$ is the *i*-th projection.

An embedding $\alpha : A \to \prod_{i \in I} A_i$ is subdirect if $\alpha(A)$ is a subdirect product of $\{A_i\}_{i \in I}$.

Definition 1.7. An algebra A is subdirectly irreducible if for every subdirect embedding

$$\alpha: A \to \prod_{i \in I} A_i$$

there is an $i \in I$ such that

$$\pi_i \circ \alpha : A \to A_i$$

is an isomorphism.

Theorem 1.8. An algebra A is subdirectly irreducible iff A is trivial or there exists a least nondiagonal congruence of A, i.e., $Con(A) \setminus \{\Delta\}$ has a least congruence.

Proof. For the proof consult Theorem 8.4 in the Universal Algebra book.

¹This means that for each $A \in V$ the lattice Con(A) of its congruences is distributive.

For each variety V let $V_{\rm SI}$ denote the class of all subdirectly irreducible algebras of V. Theorem 1.9 (Birkhoff). Every variety V is generated by $V_{\rm SI}$.